Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner.
نویسندگان
چکیده
The adrenal gland is an essential stress-responsive organ that is part of both the hypothalamic-pituitary-adrenal axis and the sympatho-adrenomedullary system. Chronic stress exposure commonly increases adrenal weight, but it is not known to what extent this growth is due to cellular hyperplasia or hypertrophy and whether it is subregion specific. Moreover, it is not clear whether increased production of adrenal glucocorticoid after chronic stress is due to increased sensitivity to adrenocorticotropic hormone (ACTH) vs. increased maximal output. The present studies use a 14-day chronic variable stress (CVS) paradigm in adult male rats to assess the effects of chronic stress on adrenal growth and corticosterone steroidogenesis. Exogenous ACTH administration (0-895 ng/100 g body wt) to dexamethasone-blocked rats demonstrated that CVS increased maximal plasma and adrenal corticosterone responses to ACTH without affecting sensitivity. This enhanced function was associated with increased adrenal weight, DNA and RNA content, and RNA/DNA ratio after CVS, suggesting that both cellular hyperplasia and hypertrophy occurred. Unbiased stereological counting of cells labeled for Ki67 (cell division marker) or 4,6-diamidino-2-phenylindole (nuclear marker), combined with zone specific markers, showed that CVS induced hyperplasia in the outer zona fasciculata, hypertrophy in the inner zona fasciculata and medulla, and reduced cell size in the zona glomerulosa. Collectively, these results demonstrate that increased adrenal weight after CVS is due to hyperplasia and hypertrophy that occur in specific adrenal subregions and is associated with increased maximal corticosterone responses to ACTH. These chronic stress-induced changes in adrenal growth and function may have implications for patients with stress-related disorders.
منابع مشابه
Zone-specific cell proliferation during compensatory adrenal growth in rats.
Compensatory adrenal growth after unilateral adrenalectomy (ULA) leads to adrenocortical hyperplasia. Because zonal growth contributions are not clear, we characterized the phenotype of cortical cells that proliferate using immunofluorescence histochemistry and zone-specific cell counting. Rats underwent ULA, sham adrenalectomy (sham), or no surgery and were killed at 2 or 5 days. Adrenals were...
متن کاملCongenital Adrenal Hyperplasia and Schmid Metaphyseal Chondrodysplasia in a Child
Congenital adrenal hyperplasia (CAH) is a group of hereditary diseases, which are autosomal recessive. CAH occurs due to defect in one of the cortisol coding genes and often clinically presents itself with signs of androgen overproduction. In this article, we report a case of CAH and Schmid metaphyseal dysplasia. Our literature review indicated that this report is the first attempt on CYP11B1 a...
متن کاملRole of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat
Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...
متن کاملCongenital adrenal hyperplasia causing clitoromegaly.
Congenital Adrenal Hyperplasia (CAH) is caused by congenital insufficiency of the enzyme 21 - hydroxylase (21-OHD) in the cortisol synthesis pathway. Because of the virilizing effects of androgens over-production, affected girls develop clitoral hypertrophy. Three patients with CAH are discussed below along with their surgical management and follow-up.
متن کاملChronic consumption of cassava juice induces cellular stress in rat substantia nigra
Objective(s): Cassava (Manihot esculenta Crantz) contains cyanogenic glycosides (linamarin and lotaustralin) that have been associated with neurological disorders in humans and rats. In basal ganglia, the dopaminergic neurons of substantia nigra pars compacta (SNpc) show high cytotoxic susceptibility; therefore, the chronic consumption of cassava (CCC) could induce neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 291 5 شماره
صفحات -
تاریخ انتشار 2006